Printe	ed Pa	ge:- Subject Code:- AMTBT0215				
	·	Roll. No:				
NC	IDA	INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA				
	(An Autonomous Institute Affiliated to AKTU, Lucknow)					
M.Tech						
SEM: II - THEORY EXAMINATION (20 20)						
77.4	Subject: Enzyme Technology & Industrial Application					
		Hours Max. Marks: 70				
		structions:				
		y that you have received the question paper with the correct course, code, branch etc. stion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice				
		MCQ's) & Subjective type questions.				
		n marks for each question are indicated on right -hand side of each question.				
		your answers with neat sketches wherever necessary.				
4. Ass	ume s	uitable data if necessary.				
-	-	ly, write the answers in sequential order.				
		should be left blank. Any written material after a blank sheet will not be				
evalu	ated/c	hecked.				
SEC ₁	ION.	-A 15				
	1. Attempt all parts:-					
1-a.	W	That is the nature of an enzyme? (CO1) K2				
	(a)	Vitamin				
	(b)	Lipid				
	(c)	Carbohydrate				
	(d)	Protein				
1-b.	W	Which of the following has a spiral metabolic pathway? (CO2) K2				
	(a)	Glycolysis				
	(b)	Citric acid cycle				
	(c)	Glyoxylate cycle				
	(d)	Fatty acid biosynthesis				
1-c.	` ′	tuasi – steady state in fed batch is when? (CO3) K2				
	(a)	Growth rate remains constant				
	(b)	Dilution remains constant				
	(c)	Growth rate changes variably				
	(d)	µ remains constant				
1-d.	` /	he advantage of cellulose acetate filters is (CO4)K2 1				
1 U.						
	(a)	Recovery of microorganisms				
	(b)	Low throughput				

	(c)	High protein binding		
	(d)	Low flow rates		
1-e.	W	Which feature makes enzymes ideal for industrial drug production? (CO5) K2		
	(a)	Cost-effectiveness		
	(b)	High selectivity		
	(c)	High temperature stability		
	(d)	Slow reaction rate		
	-	all parts:-		
2.a.		efine Michaelis-Menten Kinetics?(CO1) K1	2	
2.b.	Н	ow can pH affect microbial growth?(CO2) K2	2	
2.c.		Thy media optimization is much needed step in bioprocess agineering? (CO3) K2	2	
2.d.	W	That is mobile phase? (CO4) K2	2	
2.e.	Н	ow enzymes can be used for analytical agents? (CO5) K2	2	
SEC'	SECTION-B			
3. An	swer a	ny <u>five</u> of the following:-		
3-a.	W	That are the chemical methods of enzyme immobilization? (CO1) K1	4	
3-b.	E	xplain method of entrapment for enzyme immobilization?(CO1) K2	4	
3-c.	W	That is specific death rate? (CO2) K2	4	
3-d.	D	erive the equation for doubling time for bacteria?(CO2) K3	4	
3.e.	D	raw well labelled diagram of bioreactor? (CO3) K2	4	
3.f.	D	raw diagram for filtration process? (CO4) K2	4	
3.g.	W	That is vector? Name any two vectors that we usually use in Lab. (CO5) K2	4	
SEC'	ΓΙΟΝ-	C	35	
4. An	swer a	ny <u>one</u> of the following:-		
4-a.	D	erive equation for uncompetitive inhibition?(CO1) K3	7	
4-b.	D	raw line weaver burk plot for uncompetitive inhibition?(CO1) K3	7	
5. An	swer a	ny <u>one</u> of the following:-		
5-a.	W	That will be the RQ factor for anaerobic reaction?(CO2) K2	7	
5-b.	W	That will be the RQ factor for aerobic reactor?(CO2) K2	7	
6. An	swer a	ny <u>one</u> of the following:-		
6-a.	D	escribe the different type of bioprocess engineering with examples? (CO3) K3	7	
6-b.	W	rite about the different models used in media optimization.(CO3) K3	7	
7. An	swer a	ny <u>one</u> of the following:-		
7-a.	D	escribe the filtration process with filtration equipment?(CO4) K2	7	
7-b.	W	rite about tubular bowl centrifuge?(CO4) K2	7	

- 8. Answer any one of the following:-
- 8-a. Oil spill in sea water can be treated by a bacterium, explain the case study for the same? (CO5) K4
- 8-b. What is SSF? Explain with suitable examples.(CO5) K3

7